Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models.
نویسندگان
چکیده
Vulnerable periods during the development of the nervous system are sensitive to environmental insults because they are dependent on the temporal and regional emergence of critical developmental processes (i.e., proliferation, migration, differentiation, synaptogenesis, myelination, and apoptosis). Evidence from numerous sources demonstrates that neural development extends from the embryonic period through adolescence. In general, the sequence of events is comparable among species, although the time scales are considerably different. Developmental exposure of animals or humans to numerous agents (e.g., X-ray irradiation, methylazoxymethanol, ethanol, lead, methyl mercury, or chlorpyrifos) demonstrates that interference with one or more of these developmental processes can lead to developmental neurotoxicity. Different behavioral domains (e.g., sensory, motor, and various cognitive functions) are subserved by different brain areas. Although there are important differences between the rodent and human brain, analogous structures can be identified. Moreover, the ontogeny of specific behaviors can be used to draw inferences regarding the maturation of specific brain structures or neural circuits in rodents and primates, including humans. Furthermore, various clinical disorders in humans (e.g., schizophrenia, dyslexia, epilepsy, and autism) may also be the result of interference with normal ontogeny of developmental processes in the nervous system. Of critical concern is the possibility that developmental exposure to neurotoxicants may result in an acceleration of age-related decline in function. This concern is compounded by the fact that developmental neurotoxicity that results in small effects can have a profound societal impact when amortized across the entire population and across the life span of humans.
منابع مشابه
Central and Metabolic Effects of High Fructose Consumption: Evidence from Animal and Human Studies
Fructose consumption has increased dramatically in the last 40 years, and its role in the pathogenesis of the metabolic syndrome has been implicated by many studies. It is most often encountered in the diet as sucrose (glucose and fructose) or high-fructose corn syrup (55% fructose). At high levels, dietary exposure to fructose triggers a series of metabolic changes originating in the liver, le...
متن کاملIonotropic Glutamate Receptors and their Role in Neurological Diseases
Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...
متن کاملDeveloping optimal operating reservoir rule-curves in drought periods
In this study a simulation-optimization model is developed for deriving operation rule-curves in drought periods. To each reservoir, two rule-curves with adjustable monthly levels are introduced dividing the reservoir capacity into three zones between the normal water level and minimum operation level. To each zone of a reservoir and for each month of the year a hedging coefficient is introd...
متن کاملProbabilistic Evaluation of Seismic Performance of RC Bridges in Iran
Many existing bridges were designed without adequate consideration of seismic risk. The full or partial collapse of even one major bridge in a city or community would have destroying results. There has been focuses on developing fragility-based seismic vulnerability of existing usual bridges in Iran or support decision making on seismic upgrade. This article focuses on developing performance b...
متن کاملFipronil: mechanisms of action on various organisms and future relevance for animal models studies
Because insects had developed resistance to several insecticides, today, neonicotinoids and fiproles are used to combat pests. The difference between this two classes of insecticides is that fipronil acts by inhibiting the receptors of nervous cells, while neonicotinoids perturbs the neuronal transmission. The suitable properties of fipronil make that its use to be more obvious on the pesticide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Health Perspectives
دوره 108 شماره
صفحات -
تاریخ انتشار 2000